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O-RAN opens the RAN to intelligent control

Control and learning objective  Scale Input data

> 1000 Infrastructure-level

Policies, models, slicing .
devices KPIs

CU-level KPIs

e.g., number of
sessions, PDCP traffic

User Session Management > 100
e.g., load balancing, handover devices

Medium Access Management > |00 MAC-level KPlIs

e.g., scheduling policy, RAN devices e.g., PRB ut?lization,
slicing buffering

MAC/PHY-level KPIs

e.g., PRB utilization,
channel estimation

Radio Management

e.g., resource scheduling,
beamforming

~10
devices

Device DL/UL Management

e.g., modulation, interference, | device I/Q samples
blockage detection

For further study or not supported

Timescale

Non real-time
>1|s

Near real-time
|0-1000 ms

Near real-time
|0-1000 ms

Real-time
< |0 ms

Real-time
< | ms

Currently supported by O-RAN

Architecture

i Service Management and Orchestration (SMO)
non real-time RIC
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Open Challenges

=

= Need large-scale heterogeneous datasets

gl Need testing of closed-loop control without compromising network
Lo performance

V Need algorithms that generalize to different scenarios and conditions
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Experimental platforms for wireless Al

Need large-scale heterogeneous datasets

(L

PAWR platforms and Colosseum can be used
to collect datasets at scale

Tools are available for large-scale data collection in
cellular networks: SCOPE platform
https://github.com/wineslab/colosseum-scope
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Example of large scale data collection with Colosseum

10 UEs |
3 slices

1 1
| UE_ |
1 1
1 1

. UE !
]

10 UEs
3 slices

10 UEs
3 slices

10 UEs
3 slices

Massive Channel Emulator
(MCHEM)

Mobility, path loss, fading,
inter-cell interference

©
SRSLTE PDCP
RLC
PGW/SGW L] MAC (&

HSS MME PHY

e ——————— ]
SRN

Cell 2
. Base station _____ I
Cell 3
. Base station _____ I
Cell 4
r ____________________

Large scale cellular scenario

with:

- 4

pase stations
|0 UEs in each base station

* Different configurations and
barameters for the RAN

https://github.com/wineslab/colosseum-oran-commag-dataset

L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, "Intelligence and Learning in O-RAN for Data-driven NextG Cellular Networks",

IEEE Communications Magazine (to appear), also on arXiv:2012.01263 [cs.NI]
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Dataset configurations and parameters

* Radio Frequency (RF) scenario setup (Colosseum Rome scenario):
* Close: UEs uniformly distributed within 20 m of each BS
* Medium: UEs uniformly distributed within 50 m of each BS
* Far: UEs uniformly distributed within 100 m of each BS

* UE Mobility:
* Static: no mobility

* Slow: 3 m/s

* Traffic classes:
* eMBB: Constant bitrate traffic (I Mbps per UE)
* MTC: Poisson traffic (30 pkt/s of 125 bytes per UE)
* URLLC: Poisson traffic (10 pkt/s of 125 bytes per UE) N
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Dataset configurations and parameters
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Slices configured in different ways

* 3 different scheduling policies
* Policy 0: Round-robin (RR)
* Policy |:Waterfilling (VWF)
* Policy 2: Proportionally fair (PF)

* Multiple PRBs allocations

- 89 hours of experiments

automated through the Institute for the Wireless
SCOPE framework I J Internet of Things

at Northeastern



Open Challenges

- Need testing of closed-loop control without compromising network
Lo performance

V Need algorithms that generalize to different scenarios and conditions

Traffic Generator (TGEN)

1 t E2 interface:
e Cell 1 [0 RIC Subscription
i UE 4 Massive Channel Emulator (MCHEM) || Base station < 0 RIC Indication

=

i (with srsiTE) | H i
W d C I ‘ ' ' d I & SN O'RAN CYCULR | U RiC Control messages Standard Radio Node (SRN)
e use O OSS eu to eP Oy test 10 UEs : @ : i )& | O-RAN near real-time RIC
3slices : i| e Ccu/ou A
SRN i oo W iEea m | A Dt ‘
° ° frmmmneeanoon . Pe ° i »- ] atabase xApp
deep reinforcement learnin Lo - B o e |
p oo T S e | E2 termination E2 manager connector
L] . %

I I Container 1 Container 2 Container 3 (one per BS)
Cell 2
............................................. Dock
ntrol for O-RAN compliant network e BERCR s ol b
control 10 - co E€IWOrKsS ot ] ; :
10UES oo ”, \ . . Cel3
3slices BB ¢ . [ Basestaion __ f|/ |O-RAN non real-time RIC
L 2 ML models catalog [«
] ; ) " o : N 10UEs  gomisens Mobility, path loss, fading, — [;;;g’s'tg{i;;h“c’g'”'% Offline training engine
More info: L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, "Intelligence and Learning in 3slices st e | N e s
| 0O1-like interface for data collection |

O-RAN for Data-driven NextG Cellular Networks", IEEE Communications Magazine, 2021

1uswAo|dap |spow 1¥a




Intelligent scheduling for RAN slicing

D

[  Challenging environment:
I B * Dynamic channel
DDDD 0 * Dynamic resource allocations for each slice

MTC slice URLLC slice eMBB slice

Exploit data-driven closed-loop control with the near real-time
RIC to automatically tune the RAN parameters for each slice

i

We focus on scheduling policy selection through Deep
Reinforcement Learning (DRL)
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9 More info: L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, "Intelligence and Learning in O-
RAN for Data-driven NextG Cellular Networks", arXiv:2012.01263 [cs.NI], December 2020



O-RAN Integration in Colosseum

Traffic Generator (TGEN)
4 4 E2 interface:
R - Cell | 0 RIC Subscription
i UE | L Bace ctar S i| 0 RIC Indication
{ wmsst® 1| Massive Channel Emulator | Base station ‘| O RIC Control messages
SRN [ i & Standard Radio Node (SRN)
(MCHEM) [ termination T T 1
10 UEs | @ . O-RAN near real-time RIC |
3 slices . ss(TE :
1 Core :
SRN - XA i
Sl = 2 |
: UE i I Base station I
| (with srsLTE) | ° X (] 1 DRL !
_________ ~ ‘ connector : 700
| - Container | Container 2 Container 3 (one per BS) i ;
|0 UEs r-===o-- 5 | e o Docker i %_
3 slices l___L_J_E___.: ° ° ) [P -~ Arod - L P L Tt ;
I _‘ . I 2]
10 UE e /PN i
T ——— ‘ BRIy SNZAN | [ S kv .
3 slices !-___L_J_E___-'_! o 2 ° !- _____ Base station i O-RAN non real-time RIC i 3
A 4 A 4 4 i ML models catalog : E
10 UEs l-----E----: MOblIlty, Path IOSS, fadlng, S B— a-sg-s-t;a;;.'--c-e'”' i Offline training engine i
. o o e e doC ALV 1
3 slices  f=====m=s inter-cell interference - G A ]
O | -like interface for data collection
\ J\
| |

Fully virtualized RAN on white-box hardware O-RAN open-source infrastructure
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Standard Radio Node (SRN)

Near RT RIC in Colosseum

XApp

Base station
connector

DRL

Container 2 Container 3 (one per BS)

Near real-time RIC:

Docker

* Based on OSC RIC (more on this tomorrow during short talks)

E2 manager = manages connections within near real-time RIC

RIC database > keeps a record of connected BSs

E2 termination =2 connect to the BSs

Implemented RIC subscription, indication and control messages =2 interface and
control BSs

Implemented custom xApps

‘ \ ‘ Institute for the Wireless
Internet of Things

| | Soon available as a Colosseum container at Northeastern



E2 RAN termination

e Use SCOPE APIs to

* get telemetry from srsRAN base station

* control slicing and scheduling in srsRAN base station

* Implemented E2 termination with custom service models

* Extend OSC components

* E2 setup, indication, control

‘ \ ‘ Institute for the Wireless
Internet of Things
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O-RAN Integration in Colosseum

12 DRL agents running in parallel

13

Fully-connected neural network PP i
(5 layers & 30 neurons each) > DRL o
) . . i Container 2 Container 3 (one per BS) i ;
Online inference w/ real-time RAN | Docker 13
performance data B S Y N e s B
I S B S N O e 00 15 N S S0 3
Trained offline on 7 GB of data & 89 | ©RiY ety e Hlis e B
hours of experiments i _ Thmocek catalos :
! —> Offline training engine i
Decisions on scheduling polic e e ey e :
each BS slice ,
. Round-.l"C.)bln (RR) e /@\ . £ /@\' Dense urban
*  Waterfilling (WF) o Lo el scenario, 4 BSs, 40
* Proportional fair (PF) ) Rz, UEs w/ pedestrian
% X é\' ~ mobility




Experimental results
URLLC slice

. 1
eMBB slice 3

0.15 | P j
| 0.8 I P
i}
0.1 ¢ ! ! 1
0.6 | if

u L 0.05 | 'l:f 1

© o T
0.4 r 0.6N\07 08 09 /
0.2 |
N , 4 ——RR = = WF {
Spectral Efficiency [bit/s/Hz] I T DRL control /
O ,j | . 1"/
0 0.2 0.4 0.6 0.8 1
PRB Allocation Ratio
—
* Improve spectral efficiency for eMBB users
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 Satisfy URLLC users requests
* Reduce RLC buffer occupancy by 20%
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Experimental results

_C slice buffer occupancy

[
,"m.m"n.m.m’ =
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Experimental results — policy selection

Probability that the DRL agent selects a certain policy

! ! ' Probability

Number of PRBs  (=size of the slice)

* Different behaviors for the 3 slices

e Different behaviors for different slice sizes » el CEEHEVER, EEpElE 2iene:
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Conclusions

Future cellular networks will be

Programmable

truly enabling the vision of data- and Al-driven networks
Road ahead:
* Testbeds and platforms for intelligent RAN development

* Dataset availability

* More involvement toward open-source protocol stacks
|7



Resources

* Open source 5G software website: https://open5g.info

* Colosseum website: https://colosseum.net

* PAWR platforms: https://advancedwireless.org

* Institute for the Wireless Internet of Things:

https://www.northeastern.edu/wiot/

N
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